Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Curr Biol ; 29(11): 1877-1884.e6, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31130459

RESUMO

Lifetime reproductive capacity is a critical fitness component. In insects, female reproductive capacity is largely determined by the number of ovarioles, the egg-producing subunits of the ovary [e.g., 1]. Recent work has provided insights into ovariole number regulation in Drosophila melanogaster. However, whether mechanisms discovered under laboratory conditions explain evolutionary variation in natural populations is an outstanding question. We investigated potential effects of ecology on the developmental processes underlying ovariole number evolution among Hawaiian Drosophila, a large adaptive radiation wherein the highest and lowest ovariole numbers of the family have evolved within 25 million years. Previous studies proposed that ovariole number correlated with oviposition substrate [2-4] but sampled largely one clade of these flies and were limited by a provisional phylogeny and the available comparative methods. We test this hypothesis by applying phylogenetic modeling to an expanded sampling of ovariole numbers and substrate types and show support for these predictions across all major groups of Hawaiian Drosophila, wherein ovariole number variation is best explained by adaptation to specific substrates. Furthermore, we show that oviposition substrate evolution is linked to changes in the allometric relationship between body size and ovariole number. Finally, we provide evidence that the major changes in ovarian cell number that regulate D. melanogaster ovariole number also regulate ovariole number in Hawaiian drosophilids. Thus, we provide evidence that this remarkable adaptive radiation is linked to evolutionary changes in a key reproductive trait regulated at least partly by variation in the same developmental parameters that operate in the model species D. melanogaster.


Assuntos
Adaptação Biológica , Drosophila/fisiologia , Animais , Contagem de Células , Meio Ambiente , Feminino , Havaí , Ovário/fisiologia , Filogenia , Reprodução
3.
Opt Express ; 21(18): 20707-12, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24103943

RESUMO

A theoretical and experimental investigation of the transmission of solid-core photonic crystal fibers (PCFs) filled with nonlinear absorbers shows a sharp change in the threshold for optical limiting and in leakage loss as the refractive index of the material in the holes approaches that of the glass matrix. Theoretical calculations of the mode profiles and leakage loss of the PCF are in agreement with experimental results and indicate that the change in limiting response is due to the interaction of the evanescent field of the guided mode with the nonlinear absorbers in the holes.

4.
Ecol Evol ; 3(5): 1248-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23762511

RESUMO

Major disjunctions among marine communities in southeastern Australia have been well documented, although explanations for biogeographic structuring remain uncertain. Converging ocean currents, environmental gradients, and habitat discontinuities have been hypothesized as likely drivers of structuring in many species, although the extent to which species are affected appears largely dependent on specific life histories and ecologies. Understanding these relationships is critical to the management of native and invasive species, and the preservation of evolutionary processes that shape biodiversity in this region. In this study we test the direct influence of ocean currents on the genetic structure of a passive disperser across a major biogeographic barrier. Donax deltoides (Veneroida: Donacidae) is an intertidal, soft-sediment mollusc and an ideal surrogate for testing this relationship, given its lack of habitat constraints in this region, and its immense dispersal potential driven by year-long spawning and long-lived planktonic larvae. We assessed allele frequencies at 10 polymorphic microsatellite loci across 11 sample locations spanning the barrier region and identified genetic structure consistent with the major ocean currents of southeastern Australia. Analysis of mitochondrial DNA sequence data indicated no evidence of genetic structuring, but signatures of a species range expansion corresponding with historical inundations of the Bassian Isthmus. Our results indicate that ocean currents are likely to be the most influential factor affecting the genetic structure of D. deltoides and a likely physical barrier for passive dispersing marine fauna generally in southeastern Australia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...